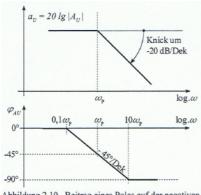
Formelsammlung elektronische Schaltungen

1. Operationsverstärker

a. Grundschaltungen mit OPVs

Spannungs-Strom- Wandler	$I_L = \frac{U_1}{R_1}$	
Strom-Spannungs- Wandler	$U_2 = -I_X R_M$	
Invertierender Addierer	$-U_2 = U_{11} \frac{R_2}{R_{11}} + U_{12} \frac{R_2}{R_{12}} + U_{13} \frac{R_2}{R_{13}} + \cdots$	
Invertierender Integrator	$u_2 = -\frac{1}{R_1 C} \int_0^t u_1(t^*) dt^* + U_{20}(t=0)$	
Logarithmierer	$U_D = -U_2 = U_T \cdot ln\left(\frac{I_D}{I_S}\right) = U_T \cdot ln\left(\frac{U_1}{R_1 \cdot I_S}\right)$	
Subtrahierer	$U_2 = U_{11} \frac{R_4}{R_3 + R_4} \left(\frac{R_2 + R_1}{R_1} \right) - U_{12} \frac{R_2}{R_1}$	
Instrumenten- verstärker	$U_{2} = \left(1 + \frac{2R_{2}}{R_{1}}\right) \cdot \left(U_{11} - U_{12}\right)$ $U_{Ku} = -\frac{R_{1}}{R_{2}}U_{2max} + U_{ref}\frac{R_{1} + R_{2}}{R_{2}}U_{Ko} = -\frac{R_{1}}{R_{2}}U_{2min} + U_{ref}\frac{R_{1} + R_{2}}{R_{2}}$	
Nichtinvertierender Schmitt-Trigger		
Invertierender Schmitt-Trigger	$U_{Ku} = \frac{R_1}{R_1 + R_2} U_{2min} + U_{ref} \frac{R_2}{R_1 + R_2} \ U_{Ku} = \frac{R_1}{R_1 + R_2} U_{2max} + U_{ref} \frac{R_2}{R_1 + R_2}$	


b. Realer OPV in N-INV oder INV Grundschaltung

Betriebs- eigenschaft	N-INV Verstärker	INV Verstärker
$A_U = u_2 / u_I$	$A_U^N = \frac{A_{UD}}{1 + \frac{R_1}{R_1 + R_2} \cdot A_{UD}} $ *)	$A_{U}^{I} = -\frac{R_{2}}{R_{1} + R_{2}} \cdot \frac{A_{UD}}{1 + \frac{R_{1}}{R_{1} + R_{2}} \cdot A_{UD}}$
$1/A_U = u_1 / u_2$	$\frac{1}{A_U^N} = \frac{R_1}{R_1 + R_2} + \frac{1}{A_{UD}}$	$\frac{1}{A_U^I} = -\left[\frac{R_1}{R_2} + \frac{1}{A_{UD}} \cdot \left(1 + \frac{R_1}{R_2}\right)\right]$
$r_I = u_I / i_I$	$r_1^N = r_{1D} \cdot \left(1 + \frac{R_1}{R_1 + R_2} \cdot A_{UD}\right)$	$r_1^{\ I} = R_1 + \frac{R_2}{1 + A_{UD}}$
$r_2 = u_2 / i_2$	$r_2^N = r_2^I = \frac{r_2}{1 + \frac{R_1}{R_1 + R_2} \cdot A_{UD}} **$	*)

c. GBW, Slew Rate und Leistungsbandbreite

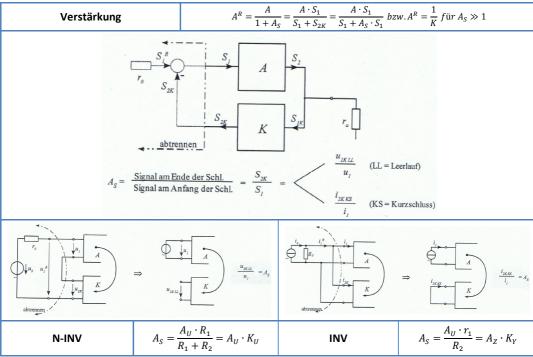
•	d211, 51611 Table and Zeisean-goodinast ette
GBW	$A_{U0} \cdot f_G = A_{U0}^N \cdot f_G^N = 1 \cdot f_T = GBW = konst$
Slew Rate	SR, max. Anstieg Ausgangsspannung in V/μs (du/dt)
Kleinsignal	$f_G^{\ N} = 1/2\pi\tau \ und \ t_r = 0.35/f_G^{\ N}$
Leistungs- bandbreite	$f_P = SR/2\pi \hat{\mathbf{u}}_{2max}$

2. Passive und aktive RC-Schaltungen

 $a_U = 20 \lg |A_U|$ Knick um +20 dB/Dek log.w $\varphi_{_{AU}}$ +90° +459 $0,1\omega_z$

reellen Achse zum Betrags- und Phasenfrequenzgang reellen Achse zum Betrags- und Phasenfrequenzgang der der Übertragungsfunktion

Abbildung 2.10. Beitrag eines Poles auf der negativen Abbildung 2.11. Beitrag einer Nullstelle auf der negativen Übertragungsfunktion


3. Rückkopplung

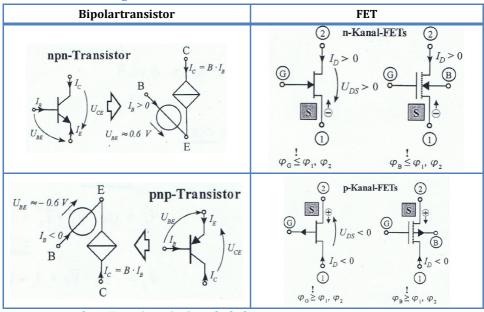
a. Allgemein

$$A = \begin{array}{c} S_2 \\ \hline S_1 \end{array} = \begin{array}{c} u_2/u_1 & U\text{-Verst\"{a}rkung} \quad A_U \\ i_2/i_1 & I\text{-Verst\"{a}rkung} \quad A_1 \\ u_2/i_1 & \text{Transimpedanz} \quad A_2 \\ i_2/u_1 & \text{Transadmittanz} \quad A_\gamma \end{array}$$

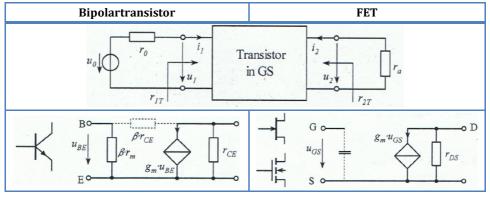
$$K = \frac{S_{2K}}{S_{1K}} = \begin{cases} u_{2K}/u_{1K} = K_{U} \\ i_{2K}/i_{1K} = K_{I} \\ u_{2K}/i_{1K} = K_{Z} \\ i_{2K}/u_{1K} = K_{Y} \end{cases}$$

Schleifenverstärkung

c. Verhalten von Verstärkern mit unzureichendem Phasenrand


Zeitbereich	$q = rac{u_{\rm 2M} - u_{ m 2\infty}}{u_{ m 2\infty}} \cdot 100$ Überschwingen mit $f pprox f_{ m ST}$	
Frequenzbereich	$\ddot{\mathbf{u}}_{HM} = a_{UM}^N - a_{U0}^N \approx 20 \cdot log\left(\frac{1}{2 \cdot \sin{(\frac{\rho}{2})}}\right) Resonanz \ mit \ f \approx f_{ST}$	

d. Unterschiede im Frequenzgang der Betriebsverstärkung zwischen INV und N-INV Verstärker


für N-INV Verstärker gilt $a_U^N = -k_U$ unterhalb f_{ST} und $a_U^N = a_U$ oberhalb f_{ST} s. erstes Kapitel, Verstärkungen sind unterschiedlich, aber f_{ST} ist gleich, Frequenzgang von N-INV ableiten.

4. Transistorschaltungen

a. Allgemein

b. Transistor in Grundschaltungen

	Bipolartransistor		FET	
	E-GS	C-GS	S-GS	D-GS
$A_{U}=u_{2}/u_{1}$	$-g_m\cdot r_a{'}$	$\frac{r_a{'}}{r_m + r_a{'}}$	$-g_m \cdot r_a{'}$	$\frac{r_a{}'}{1/g_m + r_a{}'}$
$A_{\rm I} = i_2/i_1$	$eta \cdot rac{r_a{'}}{r_a}$	$-\beta \cdot \frac{r_a'}{r_a} = -A_U \frac{r_{1T}}{r_a}$		
r _{1T}	$eta \cdot r_m$	$\beta \cdot (r_m + r'_a)$	→∞	→∞
r _{2T}	$r_{\scriptscriptstyle CE}$	$r_m + \frac{r_0}{\beta}$	r_{DS}	$\frac{1}{g_m}$
Allgemein	$g_m = \frac{1}{r_m} = \frac{\left I_C^{\ 0}\right }{U_T} \ r_{CE} = \frac{U_Y}{\left I_C^{\ 0}\right } \ r_a{'} = r_a r_{CE} $		$g_m = \frac{2 \cdot \sqrt{I_D^0 \cdot I_{DSS}}}{ U_P }$	$r_{DS} = \frac{U_Y}{ I_D^0 } r_a' = r_a r_{DS} $

c. Zusätzliche Gleichungen FET

Anlauf- bereich	$I_D = \beta \left[(U_{GS} - U_{TH})U_{DS} - \frac{1}{2}U_{DS}^2 \right] \text{ mit } \beta = K_P \frac{W}{L} \frac{1}{r_{DS}} = \beta \left U_{GS}^O - U_{TH} - U_{DS} \right $
Abschnür -bereich	$I_{D} = \frac{\beta}{2} (U_{GS} - U_{TH})^{2} g_{m} = \frac{i_{D}}{u_{GS}} = \sqrt{2\beta I_{D}^{0} } = \beta U_{GS}^{0} - U_{TH} r_{DS} = \frac{1 + \lambda U_{DS}^{0}}{\lambda I_{D}^{0}} \approx \frac{U_{Y}}{ I_{D}^{0} }$

d. Analyse einstufiger RC-Transistorverstärker

	•
AC-Ersatzschaltbild	R_X und R_Y (vereinfachen); $\omega_m c_K \rightarrow \infty$, $\omega_m c_P \rightarrow 0$, $u_s(t)=0$
Vorwärtsbetriebs- größen des Transistors	Ermitteln von r_{1T} , A_{uT} und A_{iT} (s. Tabelle unter b.)
Vorwärtsbetriebs- größen des Verstärkers	Ermitteln von A_{uV} = A_{uT} , A_{uQ} , A_{iV} = $-A_{uV} \cdot r_{1V}/R_L$ und r_{1V}
Rückwärtsbetrieb	Eingang kurzschließen, Ausgang mit SQ, r_{2T} und r_{2V} ermitteln
Aussteuergrenzen	$\begin{aligned} \textit{Bipolar}: \hat{\mathbf{u}}_{2max} &= \textit{Min}[(I_{\textit{C}}^{0} \cdot r_{a}), (U_{\textit{CE}}^{0} - U_{\textit{CESat}})] \\ \textit{FET}: \hat{\mathbf{u}}_{2max} &= \textit{Min}[(I_{\textit{D}}^{0} \cdot r_{a}), (U_{\textit{DS}}^{0} - U_{\textit{DSSat}})] \end{aligned}$

e. Rückkopplung bei Transistorverstärkern

A _U ^R	$-\frac{g_m r_a}{1 + g_m R_K} \approx -\frac{r_a}{R_K} f \ddot{\mathbf{u}} r R_K \gg \frac{1}{g_m}$	r ₁ ^R	β·(r _m + R _K)
A _I ^R	β	r ₂ ^R	$r_{2T} \cdot (1 + g_m R_K)$

f. Strom-/Spannungsquellen

Rückkopplung	$r_{SQ} = r_{CE}(1 + g_m R_E) \text{ bzw. } r_{SQ} = r_{DS}(1 + g_m R_S)$
g. I	Differenzverstärker
	4

Differenz-	$A_{Da} = \frac{u_{2a}}{u_{1D}} = -\frac{g_m}{2} r'_{aa} \ mit \ r'_{aa} = r_{aa} r_{CE} \ A_D = -g_m r'_a \ mit \ r_a = r_{aa} = r_{ab}$	
austeuerung	u_{1D} 2 at at at u_{1D} 2 at at u_{1D}	
Gleichtakt-	$A_{Ga} = -rac{g_m r_{aa}}{1 + 2g_m R_E} A_G = 0 \ (sym.) = rac{-\Delta r_a}{2R_E} (r_{aa} \neq r_{ab})$	_
aussteuerung	$A_{Ga} = -\frac{1}{1 + 2g_m R_E} A_G = 0 \text{ (Sym.)} = \frac{1}{2R_E} (r_{aa} + r_{ab})$	즑
gemischte A.	$\mathbf{u_{1D}} = u_{1a} - u_{1b}$ $\mathbf{u_{1G}} = (u_{1a} + u_{1b})/2$	
Gleichtakt-	$A = A_{Da} = a_{Da} = 2g_m R_E$	
unterdrückung	$m{A_{CMR(a)}} = rac{A_{Da}}{A_{Ga}} = g_m R_E \ \ m{A_{CMR}} = rac{2g_m R_E}{\Delta r_a/r_a}$	
Eingangswiderstand	$m{r_{1D}} = rac{u_{1D}}{i_{1D}} = 2eta r_m \ mit \ r_m = rac{U_T}{I_C}^0$	
aktive Lasten	Einsetzen von r _{CE} bzw. r _{SQ} in obige Gleichungen	
Slew Rate	$R_C: SR = \frac{2I_0}{C_2} SQ - Last: SR = \frac{I_0}{C_2} single - ended: SR = \frac{2I_0}{C_2}$	