
Allgemein		
$u_R(t) = R \cdot i_R(t)$	$u_L(t) = L \cdot \frac{di_L(t)}{dt}$ $i_C(t) = C \cdot \frac{du_C(t)}{dt}$	Dehnug ε
	at dt	$Q = DA = \varepsilon_0 \varepsilon_r$ E_F A mit $E = EModul$
		$Q = DA = \varepsilon_0 \varepsilon_r$ $\underbrace{E_F}_{\beta \varepsilon = \frac{\beta \sigma}{E}} A$ mit $E = EModul$ $mach. Spannung \sigma = \frac{F}{A}$
Lautheit N	$N = c \cdot p^{0,6} = \left(\frac{p_2}{p_1}\right)^{0,6} = \left(\frac{10^{L_2/20}}{10^{L_1/20}}\right)^{0,6} = \left(10^{\Delta L/20}\right)^{0,6}$	Doppelte Lautheit $\approx 10 dB$
	Spannungsteiler: $U_i = U_{ges} * \frac{R_i}{R_{ges}};$	$R_A \parallel R_B = \frac{R_A R_B}{R_A + R_B}; \qquad P = UI = RI^2 = \frac{U^2}{R}$

3. Logarithmierte Größenverhältnisse									
Allgemein		$a = \beta * \log_{10}$	$a=\beta*\log_{10}\left \frac{A_1}{A_0}\right dB=\beta\lg\left \frac{A_1}{A_0}\right dB$ mit $\beta=10$ (Energie $\frac{P_1}{P_0}$), $\beta=20$ (Feldgrößen $\frac{U_1}{U_0}$)					dB_{r} = Pegel bezogen auf gewählten Referenzwert	
Leistungsver	•		$a_P = a_U + 10 \lg \left \frac{R_E}{R_A} \right $						$dB_{ m m}={ m mW}$ Leistungspegel
	Verstärkungs- /Dämpfungsmaß $a_{UV} = 20 \cdot lg \frac{v_{Ausgang}}{v_{Eingang}} = -20 \cdot lg \frac{v_{E}}{v_{A}} = -a_{UD}$			$dB_V = V$ Spannungspegel $dB_A = Pa$ Schalldruckpegel					
2	A_U	$\sqrt{2} \approx 1.4$	$\sqrt{2} \approx 1.4$ 2 10 20 $25_{=100/4}$ $30_{=\sqrt{2}*2*10}$ $100_{=10*10}$! Spannungsteiler		
\mathbf{a}_{U}	a _U	3 6 20 26 $28_{=40-6-6}$ $29_{=20+6+3}$ $40_{=20+20}$				a _U ist negativ!			
Pegel L		Bezogen auf feste Größe $(A_0) \rightarrow dB_m = mW; dB_V = V; dB_A = Schalldruck$				Pegel $p_0 o Normal \ p = p_0 10^{rac{a_p}{20}}$			

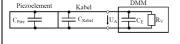
Offener Opv $R_E \rightarrow \infty$	Gegenkopplung	R_E ist endlich	Struktur Dividierer	CONNECTION DIAGRAMS 8-Lead Plastic DIP (N) Package	Struktur Radizierer
	$R_E \to \infty$		$u_1 \circ \stackrel{+}{\longrightarrow} A_D \longrightarrow \circ u_A$	X1 1 + 8 +Vs	$u_1 \circ \xrightarrow{+} \longrightarrow A_D \longrightarrow \circ u_A$
U_p U_a R_E U_A	U ₁ R ₂ U _A U _A	$\bigcup_{I_{R_1}} \bigcup_{I_{R_1}} \bigcup_{I_{R_2}} \bigcup_{I_{R_2}} \bigcup_{I_{R_1}} \bigcup_{I_{R_2}} \bigcup_{I_{R_1}} \bigcup_{I_{R_2}} \bigcup_{I$	X u ₂	2 2 1 1 W 1 S 2 2 1 1 W 2 2 1 S 2 Y 2 4 A A A A A A A A A A A A A A A A A A	x
<u> </u>	<u> </u>		$U_A = \frac{U_1}{U_2} * U_0$	$A_D \to \infty$	$U_A = \sqrt{U_1 * U_0}$
			U ₀ zu korrektur der E	Einheit	$U_1 = U \ von \ X_1 zu \ X_2$
$A_D = \frac{A_U}{U_d}$	$A_U = 1 + \frac{R_2}{R_1}$	$R_E = \frac{A_D}{A_U} * R_E'$	$U_D = U_1(\frac{U_1 - U_2}{U_0}) \qquad U_x$	$=\frac{U_A U_2}{U_0}$	$U_{nach x} = \frac{U_A^2}{U_0}$

5.Temperatursensoren							
	Resistance Temperature Detector)						
Widerstand	$R(\vartheta) = R_0 \cdot (1 + \alpha \vartheta) \ mit \ \alpha = \frac{R(\vartheta) - R_0}{R_0 \cdot \vartheta} = \frac{\Delta R/R_0}{\Delta \vartheta} \qquad I_{k2} = \frac{k_{\vartheta 2}}{R_{\chi_0} \alpha_{\chi}}$	$\left[\alpha_{allg}\right] = \frac{1}{\left[x\right]}$					
Allgemein: Einflusskoeffizient:	$y(x) = y_0 \cdot \left(1 + \alpha_{allg} x\right) mit$ $\alpha_{allg} = \frac{y(x) - y(0)}{y \cdot x} = \frac{\frac{\Delta y}{y}}{\Delta x} = \frac{rel \ddot{A}nderung \ d.beinflussten \ Gr\"{o}\beta e}{abs \ddot{A}nderung \ d.beinflussenden \ Gr\"{o}\beta e}$	Von 0 bis 100° ist $\alpha_{Ni} = 6.18 * 10^{-3} K^{-1}$ $\alpha_{Pt} = 3.85 * 10^{-3} K^{-1}$					
Eigenschaften:	Linear (Pt100), großer Temperaturmessbereich, Langzeitstabilität						
Genauigkeitsklassen:	Klasse A: $\pm (0.15^{\circ}C + 0.002\vartheta)f\ddot{u}r - 200 \dots 600^{\circ}C$ Klasse B: $\pm (0.3^{\circ}C + 0.005\vartheta)f\ddot{u}r - 200 \dots 600^{\circ}C$.00 850° <i>C</i>					
Heißleiter (NTC-Widers	tände/-Thermistoren)						
Widerstand	$R(T) = R_0 \cdot e^{b\left(\frac{1}{T} - \frac{1}{T_0}\right)}$ b = Materialkonstante						
Eigenschaften:	+ Low Cost, höchste Empfindlichkeit, vielfältige Bauformen und Widerstandsgrundwerte - höchste Nichtlinearität, hohe Exemplarstreuung (10-20% Widerstandsabweichung →Fehle	erbeim Stromaustausch)					
Kaltleiter	Bei ↓Temp. NTC-Eigenschaften; Bei ↑Temp. Nimmt der Widerstand aber stark zu → nur ei Überwachungsaufgaben	Bei ↓Temp. NTC-Eigenschaften; Bei ↑Temp. Nimmt der Widerstand aber stark zu → nur einfache Überwachungsaufgaben					
Si-Wid-Thermometer	Sensoren leicht gegen einander austauschbar, kleine Bauform → kurze Ansprechzeit	Sensoren leicht gegen einander austauschbar, kleine Bauform → kurze Ansprechzeit					
Integrierter Sperrschich	nt-Temperatur Sensor						
$\Delta U = U_{D2} - U_{D1} = m^{\frac{1}{2}}$ raus	$\frac{eT}{e}\ln\left(\frac{I_{D2}}{I_{D1}}\right)$ \Rightarrow keine Temp. Abhängigkeit $I_S(T)$ fällt Eigenschaften: - Gute Linearität; Messbereich - Integrierter Sensor mit Verstärker	(-50° bis 150°)					
Thermoelement							
Gleichung	$U_{th} = k_{AB} \cdot (T_X - T_{VVergleichstemperatur})$	$Q \xrightarrow{U_{th}} Q$					
Empfindlichkeit:	$K_{AB} = k_{A Pt} - k_{B Pt}$ bezogen auf Platin $\rightarrow U_{x} = k_{AB} * T_{x}$	Cu Cu					
Eigenschaften:	 Empfindlichkeit wird aus der thermoelektrischen Spannungsreihe ermittelt Geringe Empfindlichkeit Mit Schutzrohr träge, ohne relativschnell Nur Temperaturdifferenzen Großer Temperaturmessbereich 	Tv O Tv					
Klassen:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A B					

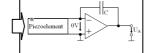
3	-200°C bis 40°C ±	Max (2,5 °C; 0,015 θ)	1X
Hallsensor		Stromzange	
$n = \text{Ladungsträgerdichte} \\ q = \text{Ladung der Elektronen} \\ \text{bzw. L\"{o}cher} \pm e \\ I_{St} = \text{Steuerstrom}$		S ₁ S ₂ S ₃ S ₄ S ₄ S ₅	Durch Ergänzung Kompensation der Nichtlinearitäten des Eisens. I _X = n · I _A !!! Nur AC Ströme Messbar!!! Ebenfalls durch Ergänzung → besseres dynamisches Verhalten
		Gleichstrom: $I_x = n * I_k = n \frac{U_S}{R_S}$	
$U_H = \frac{1}{n \cdot q \cdot d} \cdot I_{S}$	$\mathbf{r} \cdot B = c_H \cdot \frac{\mathbf{I}_{St} \cdot \mathbf{B}}{d}$ $= \text{Hallkonstante}$		mzange (DC-Kopplung) können Gleich- und . Bei einer Wechselstromzange (AC) nur Wechselströme.
$\operatorname{mit} c_H = \frac{1}{nq} = \frac{1}{ne}$	- = Hallkonstante	Vorteile: - keine Fehler durch Nicht	linearität und T-abhängigkeit der Eisenkenngrößen

Kraftaufnehmer

Piezoelektrischer Effekt


Wird ein polarisiertes, piezoelektrisches Material durch eine Kraft F belastet (Dipole sind überall ausgerichtet), so entsteht im Dielektrikum eine elektrische Feldstärke. Die Spannung der Platten wird kurzgeschlossen und der Leerlaufstrom gemessen.

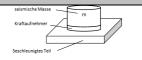
Fließende Ladung:


$$Q = k_F * F$$

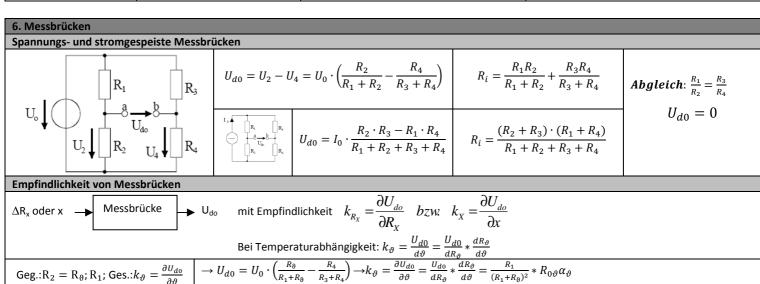
 $Q=k_F*F$ Proportionalitätskonstante $\mathbf{k_F}$ (=Materialkonstante) ist $\underline{\underline{nur\ vom\ Material}}$ abhängig und vom Hersteller angegeben $Q = C * U = \frac{c}{2} * 2U$

Ladungsverstärker

- Empfindlichkeit von Kabalkapazität \mathcal{C}_K und Eingangskap. C_E Des Messgeräts abhängig

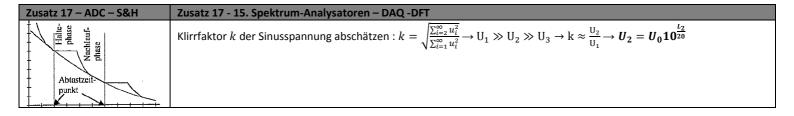

 $U_A = -U_C = -\frac{Q}{C} = -\frac{1}{C} * \int I_k dt = -\frac{k_F}{C} * F$

- Vorteile: Empfindlichkeit, durch wählbare Schaltkapazität C einstellbar
 - \mathcal{C}_K und \mathcal{C}_E der OPV-Schaltung haben keinen Einfluss mehr auf Empfindlichkeit, U = 0V
 - Entladungszeitkonstante wird fast nur noch durch den Isolationswiderstand der Schaltkapazität bestimmt und ist viel größer → auch quasistationäre Kraftverläufe können erfasst werden


Be schle unig ung saufnehmer

Masse Kraftaufnehmer vernachlässigbar gegenüber seismischer Masse: $Q=k_F*F=k_F*m*a$ Hersteller gibt Empfindlichkeit k_a an: $k_a = \frac{dv}{da}$

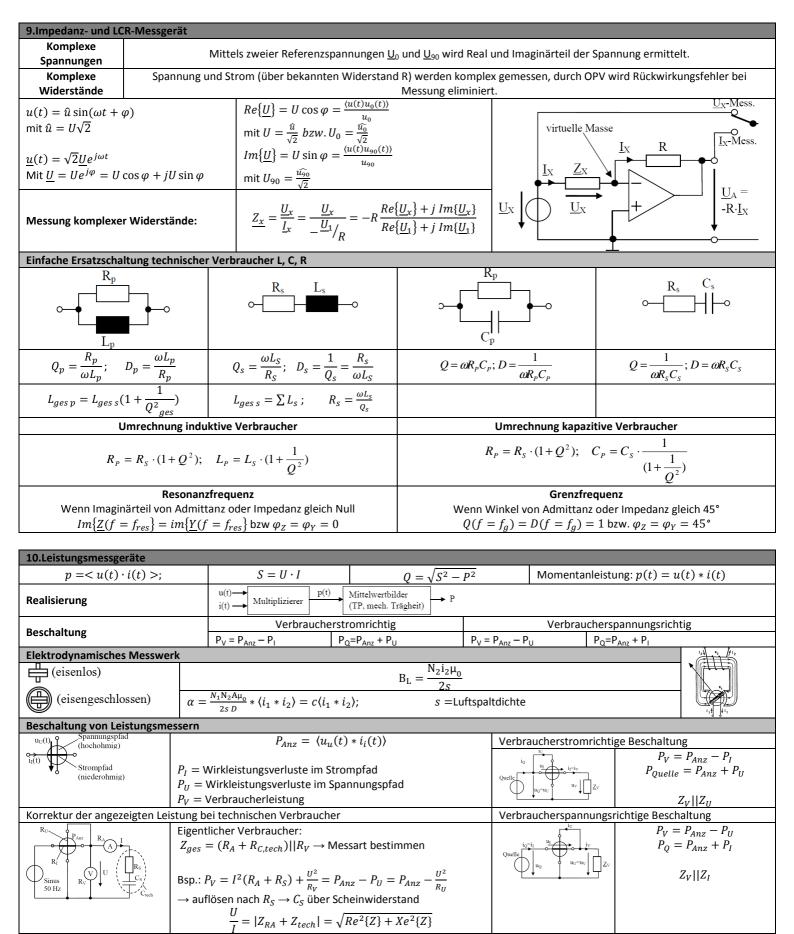
$$a(t) = \frac{u(t)}{k_q} \rightarrow \Delta v(t) = \int a(t)dt$$

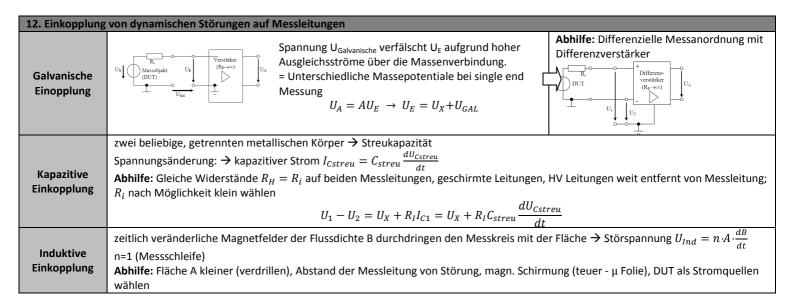

Weg - und Winkelaufnehmer Ohmsche Weg - und Winkelaufnehmer Der Schleifer eines linearen Potentiometers ist mit dem bewegten Objekt verbunden. Mittels Brückenschaltung wird in proportionale Spannung umgeformt $\textbf{Wegaufnehmer} \rightarrow \textbf{Schiebepotentiometer}$ Winkelaufnehmer → Drehpotentiometer Eigenschaften: einfach, verschleißanfällig, Stellkräfte durch Reibung **Kapazitive Wegaufnehmer** $C(x) = C_0 + mx = C_0 + \frac{2C_0}{l} = C_0(1 + \frac{x}{l/2}) \rightarrow$ führt zu nichtlinearem Verhalten Zylinderkondensator $C(x) = \varepsilon \frac{\frac{2\pi r l_w}{A_{wirksame Fläche}}}{\frac{1}{d}} = \varepsilon \frac{\frac{l_w(x) = 0.5 l + x}{l_w}}{\frac{1}{d}} = \varepsilon \frac{2\pi r (\frac{l}{2} + x)}{d} = \varepsilon \frac{\varepsilon \frac{\pi r (l)}{d}}{C_0} (1 + \frac{x}{l/2})$ $(-\frac{1}{2} < x < \frac{1}{2})$ Differential- $C_1(x) = C_0\left(1 + \frac{x}{l/2}\right); C_2(x) = C_0\left(1 - \frac{x}{l/2}\right); \rightarrow C_1(-x) = C_2(x)$ Zylinderkondensator Führt in Brückenschaltung zu streng linearem Verhalten. $\rightarrow Z_1(-x) = Z_2(x)$ $(-\frac{1}{2} < x < \frac{1}{2})r$ Induktive Wegaufnehmer Prinzipiell wird der Luftanteil des Tauchankermagnetischen Widerstandes und somit die **Aufnehmer** Induktivität durch die Bewegung eines ferromagnetischen Kernmaterials verändert. $L_1(x) \approx \frac{L(x=0)}{1 + \frac{2x}{l}}$ und $L_2(x) \approx \frac{L(x=0)}{1 - \frac{2x}{l}}$ Differential-Tauchanker-**Aufnehmer** Queranker-Aufnehmer Eigenschaften: → zum Messen von - Robust und verschleißarm Dicke von nicht - nur eingeschränkt T beständig ferromagnetischen - mäßige Stellkräfte (kaum Reibung, mehr Stoffen Masse als beim kapazitiven Aufnehmer) $L_1(x) \approx \frac{L(x=0)}{1+\frac{x}{x}}$ und $L_2(x) \approx \frac{L(x=0)}{1-\frac{x}{x}}$ Differential-Vorteil von Differential zum einfachen Queranker-Aufnehmer Queranker: - Es besteht ein linearer →Messung von kleinen Zusammenhang zwischen $U_{d\,0}$ und x-Wegen 6. Messbrücken Spannungs- und stromgespeiste Messbrücken

Phasenselektive Gleichrichtung Mit Instrumentenverstärker und Inverter der iede negative Halbwelle der Trägersnannung hei der Ausgangssnannung

Mit Instrumentenverstärker und Inverter der jede negative Halbwelle der Trägerspannung bei der Ausgangsspannung invertiert. Dadurch kann aus einer gemessenen Wechselspannung \underline{U}_{d0} eine vorzeichenrichtige Größe gemacht werden.

 \rightarrow Abschließend tiefapss + Mitelwertbilder $\underline{U}_{d0} = \underline{U}_{T} \cdot \left(\frac{\underline{Z}_{2}}{Z_{1} + Z_{0}} - \frac{\underline{Z}_{4}}{Z_{0} + Z_{1}}\right)$ $u_{d0}(t) = u_{T}(t) \cdot \left(\frac{\underline{Z}_{2}}{Z_{1} + Z_{0}} - \frac{\underline{Z}_{4}}{Z_{0} + Z_{1}}\right)$


7. Zeitfunktionen								
Effektivwert oder RMS-Wert	U =	$U = \sqrt{\langle u^2(t) \rangle} = \sqrt{\frac{1}{T} \int_0^T u^2(t) dt}$ $\langle u(t) \rangle = \frac{1}{T} \int_0^T u(t) dt$			einer ung	$U_0 = \langle u$	$(t)\rangle = \frac{1}{T} \int_0^T u(t) dt \neq 0V$	
Gleichricht- oder Gleichrichtmittelwert	($ u(t) \rangle = \frac{1}{T} \int_0^T u(t) dt$		Mischspann	ung	u	$(t) = U_0 + u_w(t)$	
Kurvenformfaktor	$k_F =$	$\frac{U}{\langle u(t) \rangle} \qquad U_x = \frac{k_{F,x}}{k_{F,sinus}}$	U_{Anz}	Zusammenh	nang zwischen		[22	
Spitzenfaktor oder crest factor		$k_c = \frac{ u(t) _{max}}{U}$		den Effektiv	_		$U = \sqrt{U_0^2 + U_W^2}$	
Angezeigter Wert	U_{Anz}	$=k_{F-eingestellt}*\langle u($	$(t) \rangle$	Abweichung	g U _{Anz} von U _{Eff}	$\delta = \frac{U}{V}$	$\frac{I_{Anz} - U}{U} = \frac{k_{F-Anz} - k_F}{k_F}$	
Formeln für einige Wechselspannun	gen bei reir	en Wechselspannunge	n gilt: U_0 =	$=\langle u(t)\rangle = 0V$	•		1	
Zeitfunktion		U	<	u(t) >	k _F		k _C	
Sinus ohne Offset:		$\frac{u_{SS}}{2\sqrt{2}} = U_W$		$\frac{u_{SS}}{\pi}$	$\frac{\pi}{2\sqrt{2}} \approx 1,110$ $\frac{2}{\sqrt{3}} \approx 1,155$		$\sqrt{2}$	
Verallgemeinertes Dreieck ohne Offset mit Tastgrad $\delta \neq 50\%$		$\frac{u_{SS}}{2\sqrt{3}} = U_W$		$\frac{u_{SS}}{3}$	$\frac{2}{\sqrt{3}} \approx 1,155$			
Verallgemeinertes Rechteck ohne Offset mit Tastgrad $\delta=50\%$		$\frac{u_{SS}}{2} = U_W$		$\frac{u_{SS}}{2}$	1		1	
Bipolares unsymmetrisches Rechteck	mit Offset	bzw. Pulsfolge mit Offs	et		1		1	
gleiche Flächen		$\delta * (1 - \delta) = U_W$	$2u_{SS}*$	$* \delta * (1 - \delta) \qquad \frac{1}{2\sqrt{\delta * (1)}}$		<u>-δ)</u>	$Maxvon\left(\sqrt{\frac{1-\delta}{\delta}};\sqrt{\frac{\delta}{1-\delta}}\right)$	
Formeln für Pulsfolge ohne Offset (is	t Mischspa	nnung!):						
↑u(t) ↑ u _{ss}		$\frac{U = u_{SS}\sqrt{\delta}}{\delta_{g\delta} = 2\delta_{U_0} +}$	U_0	$U_0 = u_{SS}\delta \qquad \frac{1}{\sqrt{\delta}}$		$\delta_{gUss} = 0$	$\frac{1}{\sqrt{\delta}}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\delta_{g\delta}=2\delta_{U_0}$ H		$2\delta_U$			$\delta_{gUss} = 0$	$\delta_{U_0} + 2\delta_U$	
8.Multimeter								
		Echte Effektiv-wertm		ssung Sinuskalibrie		alibrierte E	ierte Effektivwertmessung	
AC Messbereich (AC-Kopplun	g)	U _{An}	z = U _W		U _{Anz} = k	$k_{F,Sinus} < u_W(t) > = 1,11 < u_W(t) >$		
AC+DC Messbereich (DC-Koppl	ung)	U_A	_{nz} = U	$U_{Anz} = k_{F,Sinus} < u(t) > = 1,11 < u(t) >$				
Gleichspannungs-Messberei	ch			U_An	$_{z} = < u(t) > = U_{0}$			


8.Multimeter	Cabba Effolishin wa	wtwo 0.50p. 7	Cinvelalibuioute Effektioneette coma		
	Echte Effektiv-we		Sinuskalibrierte Effektivwertmessung		
AC Messbereich (AC-Kopplung)	U _{Anz} = U	••	$U_{Anz} = k_{F,Sinus} < u_W(t) > = 1,11 < u_W(t) >$		
AC+DC Messbereich (DC-Kopplung)	$U_{Anz} = U_{Anz}$		$U_{Anz} = k_{F,Sinus} < u(t) > = 1,11 < u(t) >$		
Gleichspannungs-Messbereich		U _A	$_{nz}$ = $\langle u(t) \rangle = U_0$		
Drehspulmesswerk					
$\alpha = \frac{1}{D} * \langle l_m(t) \rangle = k_m * \langle l_m(t) \rangle $ Em			Größe bei Drehspulmessgeräten nte <i>D</i> ; Flussdichte <i>B</i> ; Wirksame Spulenfläche <i>A</i>		
Messbereichserweiterung von Drehspulemess	geräten (Gleichstreom und -	-spannung) → Ayrt	on		
R_m = Cu-Widerstand der Drehspule I_m = Strom durch das Messwerk $I_{m,max}$ = Strom durch das Messwerk bei Vollausschlag (typ. Wert $I_{m,max}$ =0,1mA)	I I _m R _n R _s		$=\frac{I_{m,max}R_n}{I_{max}-I_{m,max}} \qquad \qquad R_S = \frac{U_{max}}{I_{m,max}} - R_m$ er wegen Schalterkontakten nicht verwendbar		
Strommessbereichserweiterung Spannungsmessbereichserweiterung erweiterung Rv Im Rn Ra R	$-R_{\rm A}=$ ohmscher Messgerä $R_{\rm 5}~bis~R_{\rm 8} ightarrow { m Durch}$ alle Wid Knotenpotenzial $=I_m(R_m-1)$	t-innenwiderstand lerstände fließt I_m + R_V) $R_5 = 0$			
Konsequenzen für Spannungsmessung (Nu	$R_1 \text{ bis } R_4 \rightarrow I_m = I \frac{R_{n_1-4}}{R'_m + R_{n_1-4}}$	-4	$R_{ges} = R_1 + R_2 + R_3 + R_4$		
Konsequenzen für Spannungsmessung (Nu	T Drenspannstrumente,	$r_m = \frac{1}{U_{max}} = \frac{1}{U_{max}}$	$\frac{1}{I_{V mMax}} = const.$ $typ. 20 \frac{1}{V}$ bel DIVIVI $R_V = const$		
Konsequenzen für Strommessung (Drehsp	ulinstrument und DMM)		$\frac{1}{I_{VmMax}} = const.$ $typ.20\frac{k\Omega}{V}$ bei DMM R _V =const $R_A = \frac{U_{A,max}}{I_{A,max}}$ $U_{A,max}$ typ. bei ≈0,2V		
Digitalmultimeter		T			
$ \begin{aligned} & \text{Sinuskalibrierte Effektivwertanzeige} \\ & u(t) \longrightarrow \underbrace{ \begin{aligned} & \text{Kopplungsglied} \\ & (AC \ / \ DC) \end{aligned} }_{\text{(AC \ / DC)}} \underbrace{ \begin{aligned} & u(t) \ bzw. \\ & u_w(t) \end{aligned} }_{\text{(Ac)}} \underbrace{ \begin{aligned} & \text{Aktiver} \\ & \text{Gleichrichter} \end{aligned} }_{\text{(uw)}} \underbrace{ \begin{aligned} & u(t) \ bzw. \\ & u_w(t) \end{aligned} }_{\text{(uw)}} $		Echte Effektivewe u(t)→ Kopplungsglied (AC / DC)	ertmessung: $\underbrace{u(t) \text{ bzw.}}_{u_w(t)} \underbrace{u^2(t) \text{ bzw.}}_{u_w^2(t)} \underbrace{v^2(t) \text{ bzw.}}_{bilder (TP)} \underbrace{\langle u^2(t) \rangle \text{ bzw.}}_{cu_w^2(t)} \underbrace{v^2(t) \rangle \text{ bzw.}}_{u_w^2(t)} \underbrace{v^2(t) \rangle \text{ bzw.}}$		
$U_{Anz} = 1,11 \cdot \langle u(t) \rangle$ bei DC-Kopplung					
$U_{Anz} = 1,11 \cdot \langle u_w(t) \rangle$ bei AC-Kopplung			Effektivwert-Messumformer		
Rückwirkungsfreie Messung: $R_V\gg R_i$ dann U-Messung; $R_V=$ Innenwiderstand bei Spannungsmessung; $R_i=$ Innenw. Angeschlossener Zweipol $R_A\gg R_i \text{ dann I-Messung; } R_A=$ Innenw. I-Messung $=\frac{\text{Messbereich I-Messung}}{\text{Spannungsabfall Vollausschlag I-Messung}}$					
Spannungsabfall Vollausschlag I-Messung					

 $U_{mess} = I_x R_x \label{eq:umess}$ Korrektes Ergebnis (kein Strom mehr durch

 $\begin{array}{c|c} \textbf{Vierleitertechnik} = \textbf{Messung niederohmiger Widerstände} \\ \hline \textbf{Problem in Zweileitertechnik:} \\ \hline \textbf{R_K} & \textbf{R_X} & \textbf{R_K} \\ \hline \textbf{I_X} & \textbf{U_{mess}} \\ \hline \textbf{R_K} & \textbf{I_{A}} & \textbf{Durch Kontaktwiderstände} \\ \hline \textbf{R_k} & \textbf{verfälschen} \\ \hline \textbf{Ergebnis} \\ \hline \end{array}$

 $R_{\rm K}$

Abtasttheorem: $f_{Abt} > 2f_{Smax}$ bzw. $f_{Smax} < f_{Ny} = \frac{f_{Abt}}{2}$;

 f_{Ny} =Nyquistfrequenz; f_{Smax} = höchste Oberschwingung

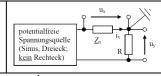
Die Abtastrate muss mind. Doppelt so hoch sein, wie die höchste im Signal vorkommende Frequenzkomponente f_{Smax}

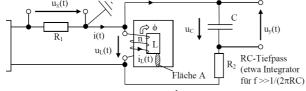
tritt auf, wenn das Abtasttheorem verletzt wird!

- o"falsche" Linien, die beim Spektrum der kontin. Zeitfunktion $u_s(t)$ in diesem Frequenzintervall nicht auftreten o aus abgetasteten Werten das Spektrum ermittelt \rightarrow es kann an dem Spektrums nicht mehr festgestellt werden ob Aliasing Fehler oder nicht.
- → Abhilfe: Vermeiden mittels vorschalten eines AD-Umsetzers und Anti-Aliasing-Filters (Tiefpass) (vor z.B. ADC)

14. Oszilloskope

X-Y-Betrieb

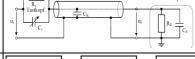

Wichtig: Außenleiter beider Kanäle an gleichen Punkt anschließen und nicht-referenzierte (erdfreie) Spannungsquelle verwenden


 $c_x, c_y = \text{Ablenkkoeffizienten } c_{x/y} = \frac{\hat{u} \pm u_x}{l_{x/y}}$ $f_g = {\it analoge Bandbreite}$

Slope = Signal startet mit+/- Flanke Pretrigger= Verschiebung in x um XZ% Level = Nullinie

Trigger Level = Signal startet XY% *Amplitude

 $i_{RC}(t) \approx 0$ (erfüllt für $R >> \omega L$)


 $\underline{\text{Durchflutungsgesetz:}}\ H_{FE} = \frac{n}{l_{FE}} * \frac{1}{R_1} U_{\mathcal{X}} \ \rightarrow H_{FE} {\sim} U_{\mathcal{X}}$ $H_{FE} = magnetische Feldstärke \left[\frac{A}{m}\right] = konstant$ Induktionsgesetz: $U_c = -U_y = \frac{nA}{R_2C}B_{FE}$

$$B_{FE} = -\frac{R_2C}{nA} * U_2$$

 $B_{FE} = -\frac{R_2C}{nA}*U_y$ Integration über RC-TP, wenn $f\gg f_g=\frac{1}{2\pi R_2C}\to R_2\gg \frac{1}{2\pi fC}$ $\rightarrow u_c \ll u_{R2} \rightarrow u_{R2} \approx u_L \rightarrow i_{RC} \approx \frac{u_L}{R_2}$

über R_F von Oszi abgeflossen ist Passiv: - Vorteile: geringerer Rückwirkungsfehler, Messung höherer Spannungen

- Nachteile: Zusatzfehler, Empfindlichkeitsverlust, ev. eingeschränkte Bandbreite Aktiv (für hochfrequente Signale): - Nachteile: eingeschränkter

Eingangsspannungsbereich, Empfindlich gegen ESD, hoher Preis

Dynamische Kenngrößen

Tastkopf Oszilloskop $t_{MA} = \sqrt{t_{UA}^2 + t_{KA}^2 + t_{EA}^2}$

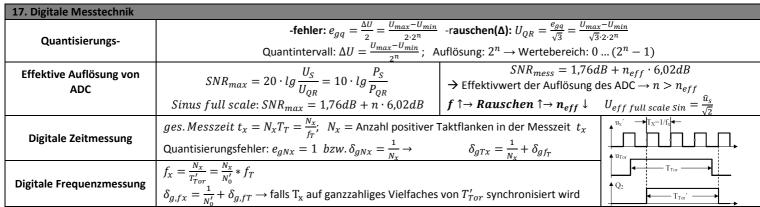
 $f_g \cdot t_{EA} = 0.35$

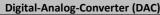
ET-Sampling

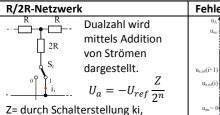
Sequentiell: Random:

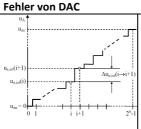
Korrektur wenn $t_{EA,ges} \approx \sqrt{t_{TKA}^2 + t_{EA}^2} > \frac{t_{MA}}{5}$; $t_{TKA} = \text{t-Tastkopf}$; $t_{EA} = \text{Oszi}$

k·∆t ab Trigger, ein Abtastwert pro Triggerpuls, Signal wird zusammengesetzt, kein Pretrigger möglich Abtastung mit fester Frequenz, Zeit ab Trigger wird gemessen, Signal dann zusammengesetzt


Vorteile R>S: Pre-Trigger auch bei analogen Signalen; mehrere Abtastungen pro Periode


Vorteile Digital > Analog-Oszi: Einfacher, Komfort, genauere Zeitmessungen


Pre-Trigger: +% verschieben nach rechts \rightarrow Oszi: $f_{ADC} \ge f_{Abt} = \frac{N \ Punkte \ pro \ Darstellung}{X \ Div*}^{Ct}/_{Div}$


15. Spektrum-Analysat	toren				
Abtasttheorem nach Shannon	$f_{abt} > 2f_{s,max}$ bzw. $f_{s,max} < \frac{f_{abt}}{2} = f_{Ny}$ mit $f_{Ny} = Ny$ quistfrequenz				
Swept Analyzer	Filter mit Bandbreite RBW wird durch das Spektrum geschoben großer Frequenzbereich, lange Messzeiten, hohe Amplitudendynamik und Empfindlichkeit, nur Amplitudenspektrum, kein Phasenspektrum Logarithmische Darstellung erforderlich, da kleine Oberschwingungen linear nicht mehr erkennbar sind				
	Länge Aufnahme (Spektrum) = $\frac{f_{Range}}{f_{Sweep}}$	RBW meist $1_{zu\ langsam}bis\ 10_{zu\ schlechte\ Auflösung}Hz$			
FFT/DFT Analyzer 10 Hz 200 kHz 300 kHz 300 kHz 376 kHz Aliastrequenz 124 kHz (100kHz)	Abtastung im Zeitbereich \rightarrow Transformation in Frequenzbereich nei $N=2^n$ wird FFT verwendet Eigenschaften: -Ermittlung komplexer Spektren (=periodische Fortsetzung des Spektrum der Originalfunktion) bzw. Amplituden- und Phasenspektren(aus komplettem Spektrum) -Messzeit: $T_{Aufz} = \frac{N}{f_{Abt}}$; schlechtere Amplitudendynamik als Swept; - Begrenzte Bandbreite auf $f_{Ny} = \frac{f_{Abt}}{2}$				
Windows	u(t) w(t) u(t) w(t) (keine Sprungstellen mehr an den Rändern von The v	Unterdrückung der Frequenzen am Frequenzrand erung des Leakage-Effekts durch Überlagerung einer Fkt.) Vindow (bis4. Harmonische lesbar), Flat Top (für Effektivwerte)			

16. Messfehler							
Tatsächlicher Fehler	$e=x_i-x_r$; $x_i=$ gemessener Wert $x_r=$ richtiger Wert; $x_B=$ Bezugsgröße	Relativer Fehler	$\delta = \frac{e}{x_B} = \frac{x_i - x_r}{x_B}$				
Systematische Fehler	Sind nach Betrag und Vorzeichen reproduzierk	oar Zufällige Fehler	Sind nicht vorhersagbar und nicht reproduzierbar				
Linearer Mittelwert	$\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$ und $\mu = \lim_{n \to \infty} \langle x \rangle = x_r$ n= Anzahl der Messungen; μ =Mittelwert der Grundgesamtheit						
Standardabweichung	$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\langle x\rangle)^2} \text{und } \sigma = \lim_{n\to\infty} s = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i^2-n\langle x\rangle^2)}$ Im Bereich $\mu \pm \sigma$ bzw. $\langle x\rangle \pm s$ liegen 68,3% aller Einzelmesswerte Je größer s bzw. σ ist, desto stärker streuen also die Einzelmesswerte						
Garantiefehlgranzen e_g			$= e_{g1} + e_{g2}$ $y = x_1 x_2^2 \to \delta_g = \delta_{g1} + 2\delta_{g2}$				
	$x_i \pm e_g$ bzw. x_i liegt mit Sicherheit in $x_r \pm e_g$		g- g g g- g-				
Analoge Messgeräte:	$e_g = \frac{K*Mb}{100} = K\%*Mb$ 3 1/2-stellige Anzeige maximal darstellbarer Wert	$\delta_g = \frac{e_g}{x_i} = K\% * \frac{Mb}{x_i} \ge$	$\geq K\%$ $Mb = \text{Messbereich bei 1-3-5 (2,5V} \rightarrow 3V)$				
Digitale Messgeräte:	3 1/2-stellige Anzelge maximal darstellbarer Wert $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v.A.=vom Anzeigev Messgerät → in Aufgaben	A.=vom Anzeigewert; v.E.=vom Messbereich; Digit=letzte Stelle des Messgerätes, Vorfaktor=Multiplikator des Digitwertes → in Aufgaben immer besten Messbereich annehmen (Stufung, 0,2;2;20;200) →DMM-Stufung				
Fehlerfortpflanzung	Keine Methode darf auf Zwischengrö						
Totales Differential	$e_{gy} \approx \sum_{i=1}^{n} \left(\left \frac{\partial y}{\partial x_i} \right _{x_i} \right e_{gi} \right)$ $e_y = y(x_i) - y(x_{r,i}) = y(x_i) - y(x_i - e_i)$ Worst-case: Werte so wählen das Fehler maximal aufaddiert						
Max/Min-Methode			metrischen Fehlerintervallen gilt: e _{gy} ≈ y _{max} - y _i s nur Min ODER Max Wert einer Größe vorkommen				
Verallgemeinerte Summe			$a_i \cdot x_i$) $\Rightarrow e_{gy} = \sum_{i=1}^n (a_i \cdot e_{gi})$ $\delta_{gy} \approx \sum_{i=1}^n p_i \cdot \delta_{gi}$				
Verallgemeinertes Produkt:	$y = a \cdot x_1^{p_1} \cdot x_2^{p_2} \cdots$	$x_i^{p_i} \cdots x_n^{p_n} = a \cdot \prod_{i=1}^n x_i^p$	$\delta_{gy} \approx \sum_{i=1}^{n} p_i \cdot \delta_{gi}$				
Systematische Fehler line	arer Messglieder	• •					
	Differenz zwischen Ist- und Sollwert am unteren $e_n = x_{ai}(x_{eu}) - x_{ar}(x_{eu})$	0	= Istkennlinie x_{ar} = Sollkennlinie				
		$\delta_n = \frac{\epsilon_n}{(x_{ao} - x_{au})}$					
Steigungsfehler es		nearitätsfehler e_L	hung day Istgayada yan Dazuzzzzzzzzzz				
Uniterscribed der Stelgung X. Iskurve X. Sollgerade X. Sollgerade	$e_{\mathit{S,mittel}} = k_{i,mittel} - k_r$ $k_r = $ Steigung Sollgerade	Sollgerade Neu	hung der Istgerade von Bezugsgerade $e_L = x_{ai} - x_{ai,Bez} \\ \delta_L = \frac{e_L}{(x_{ao} - x_{au})}$ Bei sicherer rel. Fehlergrenze: $\delta_{gL} = \frac{ e_L _{max}}{(x_{ao} - x_{au})}$				

Differentielle Linearitätsfehler: Wenn alle Bits (Major Carry übergang) kippen (1000 \rightarrow 0111) wirken sich Toleranzen der Widerstände am stärksten aus. Integrale Linearitätsfehler: $e_{IL}(i) = u_{a,ist}(i) - u_{a,soll}(i)$ Differenzielle Linearitätsfehler:

$$\begin{split} e_{DL}(i \to i+1) &= u_{a,ist}(i \to i+1) - \Delta u_{a,soll} \\ u_{a,ist}(i \to i+1) &= u_{a,ist}(i+1) - u_{a,ist}(i) \\ \Delta u_{a,soll} &= \frac{u_{ao} - u_{au}}{2^n - 1} \approx \frac{u_{ao} - u_{au}}{2^n} \end{split}$$

Analog-Digital-Converter (ADC) Sample & Hold Aufbau: Buffer, Schalter, C, Buffer Vorteile: Abtastzeitpunkt genau definiert; ADC sieht Glspng; Fehler im Wandler vermieden **Abtast-Halteglied** U wird über Kondensator gehalten und als Gleichspannung ohne du/dt abgetastet. FET schaltet Kondensator mit f_{Abt}. n = 8 Bit; f_{ums} =einige 100MS/s Höchster Schaltungsaufwand \rightarrow höchste Umsetzraten (bis 500), geringste Auflösung (8 Bit) **Parallelumsetzer** ½ Parallelumsetzer $n = 10-12 Bit; f_{ums} = 10 MS/s$ n = 12-16 Bit; f_{ums} =100k-1MS/s \rightarrow $Taktrate = nTakte * f_{max} \rightarrow$ Einsatz bei mittl dynamischen Anforderungen (DAQ) Sukzessive Approximation (SAR) Karten); Testen einzelner Bits mit Vergleichsspannung (Beginn msb)→ Schrittweise Ermittlung bis Auflösung erreicht (MUX!)

repräsentierte Dualzahl

n = bis 24 Bit; fums=wenige S/s - 0,5·u_x am Integra

Langsame Umsetzung, sehr hohe Auflösung, Einsatz in DMM zur Gleichspannungs messung, Wechselstörungen werden mit Mittelwertbildung(während Aufintegr. t_2 - t_1) rausgemittelt, günstige Bauteile $\langle u_x \rangle = \frac{1}{t_2-t_1} \int u_x(t) dt = \frac{N_2}{N_1} U_{ref}$

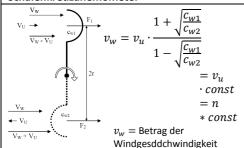
$$\langle u_x \rangle = \frac{1}{t_2 - t_1} \int u_x(t) dt = \frac{N_2}{N_1} U_{ref}$$

Vorteil(auf-/abintegration):Toleranzen, Driften der Integratorgrößen/der f_{Takt}bleiben ohne Einfluss→günstig,einfach, genau

Delta-Sigma ADC

n = 16-24 Bit; f_{ums} =1k-1MS/s Rauschen gering

Prinzip:t<t_1: Integrator wir auf 0 gesetzt \rightarrow t_1: Zähler N_1 startet, Anlgegen von u_x , Beginn der Zeitmessung $\rightarrow t_2$: Zähler $N_2 \rightarrow$ Ende des Mitteilungsintervalls, Abintegration $\rightarrow t_3$: Nulldurchgang vonu_a, Auslesen von N₂


Low Cost, Low Bandwidth, High Resolution, wird vorrangig in Audiotechnik eingesetzt

$$\langle u'(t) \rangle = U_{ref} \langle Q(t) \rangle = \frac{U_{ref}}{m} \sum_{i=1}^{m} Q_i$$

K (Binärgröße) durch das FF abgetastet; $u_{int} = 0$ (schwankt um 0); Integrale über u'(t) sind im zeitl. Mittel gleich da differenz im Mittel 0 ist; dezimierung von f_{Abt} um L \rightarrow jeder L-te Wert wird abgegriffen

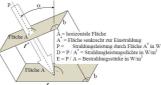
18. Messverfahren für regenerative Energien

Schalenkreuzanemometer

 $v_u = \text{Betrag der Umfangsgeschw. Halbschale}$

$$F_1 = \frac{\rho A}{2} (v_w - v_u)^2 c_{w1}$$

$$F_2 = \frac{\rho A}{2} (v_w + v_u)^2 c_{w2}$$


 $\rho = Dichte der Luft$

A =Querschnitsfläche der Halbkugeln

- Schrägan-/turbulente An-strömunten(z.B:hinter Rotor) verfälschen Toleranz

Weitere Messverfahren: Ultraschallanemometer, Flügelradanemometer, Hitzedrahtanemometer, Laser-Doppel-Anemometer, Staudruckanemometer

19. Solarstrahlung

Messgründe: Zur Beurteilung der Effizienz und Standortwahl von Solaranlagen $E = D \cos \alpha$

Abgegebene Leistung: $P = EA\mu$

Strahlungssensoren: Silizium (niedriege Langzeitstabilität, eingeschränkte Bandbreite [Wärmegewinnung 🖾] schnelle Rkt. auf Leistungsschwankungen, billig)

Thermoische Verfahren (**Präzisions-Pyranometer**):T↑ einer schwarzen Absorbtionsfläche →T vergleich mit Vergleichskörper mittels Thermosäule (Thermoelemente); Vorteil: Genau;

u_{Thermo}ohne HilfsEnergie Messung der Strahlung mit Pyranometer: Horizontal Aufbauen, Messung der Bestrahlungsstärke E

Klassen: secondarystandard \rightarrow first class \rightarrow second class Pyrheliometer: zur Messung der Direktstrahlung = Pyranemometer mit aufgesetzem Tubus (blendet, drehbar zur Ausrichtung auf die Sonne → stehts senkrechte Bestrahlung

Messung der Direktstrahlung: $E_{Direkt} = D_{Pyrel} \cos \alpha$

Messung der Diffusstrahlung: $E_{Diffus} = E_{Global} - D_{Pyrel} \cos \alpha$

Direkte Messung der Diffusstrahlung: Schattenball: - keine Korrektur; - liefert geringer Fehler (als Normal), -muss kontinuierlich der Sonne nachgeführt werden

Fester Schattenring: - individueller Korrekturfaktor; - Alle paar Tage nachstellen

Rotierender Schattenring: - keine Ausrichtung nötig; -Gleichzeitige Emssung von Global- und Diffusstrahlung; - nur für schnelle Si-Sensoren