

2. Systemdynamik
2.1 Beschreibung der Regelstrecke aus Sicht
des Regelalgorithmus
- Algorithmus sieht: HG0 + Strecke
= Regelstrecke zu den Abtastzeitpunkten

$$\{u_k\}$$
 HG0 $\overline{u(t)}$ $G(s)$ $y(t)$ $\{y_k\}$
- Darstellungen kontinuierlicher Systeme
- Polynomform
 $G(s) = \frac{a_m s^m + \ldots + a_0}{b_n s^n + \ldots + b_0}$
- Partialbruchform, bei Einfachpol und m < n
 $G(s) = \frac{y(s)}{\overline{u(s)}} = \sum_{i=1}^n \frac{c_i}{s - p_i}$
bzw. $y(s) = \sum_{i=1}^n y_i(s) = \sum_{i=1}^n \frac{c_i}{s - p_i} \cdot \overline{u(s)}$

zu 2.1
- Zusammenhang
$$\overline{u}(s)$$
 und $y_i(s)$
 $\dot{y}_i(t) = p_i \cdot y_i(t) + c_i \cdot \overline{u}(t)$
- Genaue Berechnung mittels Laplace Transformation
- Der Anfangswert zum ersten Abtastpunkt sei $y_{i,0} = y_i(0)$
 $s * y_i(s) = \frac{y_{i,0}}{s - p_i} + \frac{c_i \overline{u}(s)}{s - p_i}$
- Zwischen zwei Abtastzeitpunkten k*h und (k+1) * h ist
u(t) konstant und damit $\overline{u}(t) = u_k * \sigma(t)$
= $y_i(s) = \frac{y_{i,0}}{s - p_i} + \frac{C_i u_0}{s(s - p_i)}$
- Rücktransformation mit Korrespondenztabelle
 $y_i(t) = y_{i,0} \cdot e^{p_i t} + \frac{C_i}{p_i}(e^{p_i t} - 1)u_0$
für $0 \le t < h$
- Zum nächsten/ersten Abtastzeitpunkt t = (k+1) * h = h
 $y_i(h) = y_{i,0} \cdot e^{p_i h} + \frac{C_i}{p_i}(e^{p_i h} - 1)u_0$
- Allgemein
 $y_{i,k+1} = y_{i,k} \cdot e^{p_i h} + \frac{C_i}{p_i}(e^{p_i h} - 1)u_k$
- Gesamter Ausgang y=exakter Wert zum Abtastzeitpkt
 $y_{k+1} = \sum_{i=1}^{n} \left(y_{i,k} \cdot e^{p_i h} + \frac{C_i}{p_i}(e^{p_i h} - 1)u_k \right)$
= Haltglied-Äquivalent der Regelstrecke
- Zeitverlauf der Systemvariablen (entspricht Allgemein)
 $y_{i,k} = (\lambda_i)^k y_{i,0} + \sum_{j=0}^{k-1} (\lambda_i)^{k-j-1} \gamma_i u_j$
mit $\lambda_i = e^{p_i h} \gamma_i = \frac{c_i}{p_i}(e^{p_i h} - 1)$
 $\Rightarrow y_i$ stabil falls (λ_i)^k = 0 für k => ∞

Korrespondenziabelle Laplace <=> z- 1raio					
$x(t) \equiv x(kh)$	$X(s) = \mathcal{L}\{x(t)\}$	$X(z) = \mathcal{Z}\{x(t)\}$			
$\delta(t)$ (Impulse)	1	1			
$\sigma(t) = 1 \text{ (Sprung)}$	$\frac{1}{s}$	$\frac{z}{z-1}$			
t	$\frac{1}{s^2}$	$\frac{hz}{(z-1)^2}$			
t ²	$\frac{2}{s^3}$	$\frac{h^2 z(z+1)}{(z-1)^3}$			
e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-ah}}$			
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{z(1 - e^{-ah})}{(z - 1)(z - e^{-ah})}$			
$at-1+e^{-at}$	$\frac{a^2}{s^2(s+a)}$	$\frac{(ah-1+e^{-ah})z^2+(1-e^{-ah}(1+ah))z}{(z-1)^2(z-e^{-ah})}$			
$a^{t/h} = a^k$	$\frac{1}{s - (1/h)\ln\left(a\right)}$	$\frac{z}{z-a}$			
sin <i>wt</i>	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z \cdot \sin(\omega h)}{z^2 - 2z \cdot \cos(\omega h) + 1}$			
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	$\frac{z \cdot (z - \cos{(\omega h)})}{z^2 - 2z \cdot \cos{(\omega h)} + 1}$			

 $\sum_{k=0}^{\infty} f_k \cdot z^{-1}$

bz,

z + 1

=> a & b = ... => Rücktrafo

$$|z-2| = |z-2| = |z-2|$$

= Haltglied-Äquivalent der Regelstrecke
- Zeitverlauf der Systemvariablen (entspricht Allgeme

$$y_{i,k} = (\lambda_i)^k y_{i,0} + \sum_{j=1}^{k-1} (\lambda_j)^{k-j-1} \gamma_i u_j$$

mit
$$\lambda_i = e^{p_i h}$$
 $\gamma_i = \frac{c_i}{p_i}(e^{p_i h} - 1)$
=> y, stabil falls $(\lambda)^k = 0$ für k => ∞

$$\omega_p = n \cdot \omega_a \pm \omega_{\text{mit}} \quad \omega_a$$

- PWM oder Phasenanschnittssteuerungen

$$\frac{2.3 \text{ z-Ubertragunsfunktion}}{\text{Diffgleichung (Beschreibung E/A Verhalten)}}_{y_k + \alpha_1 y_{k-1} + \ldots + \alpha_n y_{k-n} = \beta_0 u_k + \beta_1 u_{k-1} + \ldots + \beta_m u_{k-m}}$$
Anfangswerte = 0 + Verschiebungssatz
$$Y(z)(\alpha_0 + \alpha_1 z^{-1} + \ldots + \alpha_n z^{-n})$$

$$= U(z)(\beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m})$$

$$= U(z)(\beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m})$$

$$= \sum \text{Allgemeine Übertragungsfunktion}$$

$$G(z) = \frac{Y(z)}{U(z)} = \frac{\beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{\alpha_0 + \alpha_1 z^{-1} + \ldots + \alpha_n z^{-n}}$$

$$= \frac{b_0 + b_1 z + \ldots + b_m z^m}{\alpha_0 + \alpha_1 z^{-1} + \ldots + \alpha_n z^{-n}}$$
es muss immer gelten: $n \ge m$ (Diffgrad = $n - m$)
$$\frac{2.4 \text{ z-Transformation der Regelstrecke mit}}{Halteglied und Abtaster}$$

$$\frac{2.4 \text{ z-Transformation}}{Halteglied und Abtaster}$$

$$\frac{2.4 \text{ z-Transformation}}{Halteglied und Abtaster}$$

$$\frac{2.4 \text{ z-Transformation}}{Halteglied und Abtaster}$$

$$\frac{2.4 \text{ z-Transformation}}{G(s) = \frac{c}{s - p}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} + \ldots + \beta_m z^{-m}}{G(z)}$$

$$\frac{2.5 \text{ der } \beta_0 + \beta_1 z^{-1} +$$

Allgemeine Form:

$$H_0G(z) = \frac{b_{n-1}z^{n-1} + b_{n-2}z^{n-2} + \ldots + b_0}{z^n + a_{n-1}z^{n-1} + \ldots + a_0}$$

einsetzen falls nur Koeffizietenen gegeben

Korrespondenztabelle zur Bestimmung H₀G(z) aus G(s) **d.h. nur falls G(s) MIT HALTEGLIED UND ABTASTER**

G(s)	$H_0 G(z)$ bzw. Koeffizienten von $H_0 G(z)$	$\mathbf{G}(\mathbf{s})$	$H_0 G(\boldsymbol{z})$ bzw. Koeffizienten von $H_0 G(\boldsymbol{z})$
$\frac{1}{s}$	$\frac{h}{z-1}$		$b_1 = 1 - \alpha \left(\beta + \frac{D\omega_0}{\omega} \gamma \right) \qquad \omega = \omega_0 \sqrt{1 - D^2} \qquad D < 1$
$\frac{1}{r^2}$	$\frac{h^2(z+1)}{2(z-1)^2}$	$\frac{\omega_0^2}{\omega_0^2}$	$b_0 = \alpha^2 + \alpha \left(\frac{D\omega_0}{\omega} \gamma - \beta \right) \qquad \alpha = e^{-D\omega_0 h}$
e^{-sh}	z^{-1}	$s^2 + 2D\omega_0 s + \omega_0^2$	$a_1 = -2\alpha\beta \qquad \qquad \beta = \cos(\omega h)$ $a_0 = \alpha^2 \qquad \qquad \gamma = \sin(\omega h)$
a	$1 - e^{-ah}$		$b_1 = \frac{1}{\omega} e^{-D\omega_0 h} \sin(\omega h) \qquad b_0 = -b_1$
<u>s+a</u>	$z - e^{-ah}$ $b_1 = \frac{1}{(ah - 1 + e^{-ah})} b_0 = \frac{1}{(1 - e^{-ah} - ahe^{-ah})}$	$\frac{s}{s^2 + 2D\omega_0 s + \omega_0^2}$	$a_1 = -2e^{-D\omega_0 h} \cos(\omega h) \qquad a_0 = e^{-2D\omega_0 h}$ $\omega = \omega_0 \sqrt{1 - D^2}$
$\frac{a}{s(s+a)}$	$a^{*} = -(1 + e^{-ah})$ $a_{0} = e^{-ah}$	a ²	$b_1 = 1 - \cos(ah)$ $b_0 = b_1$
a ²	$b_1 = 1 - e^{-ah}(1 + ah)$ $b_0 = e^{-ah}(e^{-ah} + ah - 1)$	$\overline{s^2 + a^2}$	$a_1 = -2\cos\left(ah\right) \qquad \qquad a_0 = 1$
$\frac{a}{(s+a)^2}$	$a_1 = -2e^{-ah} \qquad \qquad a_0 = e^{-2ah}$	s	$b_1 = \frac{1}{a}\sin\left(ah\right) \qquad \qquad b_0 = -b_1$
$\frac{s}{(s+a)^2}$	$\frac{(z-1)he^{-ah}}{(z-e^{-ah})^2}$	$\overline{s^2 + a^2}$	$a_1 = -2\cos(ah) \qquad a_0 = 1$
$\frac{ab}{(s+a)(s+b)}$ $a \neq b$	$b_1 = \frac{b(1 - e^{-ah}) - a(1 - e^{-bh})}{b - a}$ $b_0 = \frac{a(1 - e^{-bh})e^{-ah} - b(1 - e^{-ah})e^{-bh}}{b - a}$ $a_1 = -(e^{-ah} + e^{-bh}) \qquad a_0 = e^{-(a+b)h}$	$\frac{a}{s^2(s+a)}$	$b_2 = \frac{1-\alpha}{a^2} + h\left(\frac{n}{2} - \frac{1}{a}\right) \qquad \alpha = e^{-ah}$ $b_1 = (1-\alpha)\left(\frac{h^2}{2} - \frac{2}{a^2}\right) + \frac{h}{a}(1+\alpha)$ $b_0 = -\left[\frac{1}{a^2}(\alpha - 1) + \alpha h\left(\frac{h}{2} + \frac{1}{a}\right)\right]$
$\frac{s+c}{(s+a)(s+b)}$	$b_1 = \frac{e^{-bh} - e^{-ah} + (1 - e^{-bh})c/b - (1 - e^{-ah})c/a}{a - b}$		$a_2 = -(\alpha + 2)$ $a_1 = 2\alpha + 1$ $a_0 = -\alpha$
$a \neq b$	$b_0 = \frac{1}{ab}e^{-(a+b)h} + \frac{1}{b(a-b)}e^{-ah} + \frac{1}{a(a-b)}e^{-bh}$ $a_1 = -(e^{-ah} + e^{-bh}) \qquad a_0 = e^{-(a+b)h}$		

$$\frac{2.5 \text{ Stabilität predictor Systeme
Systembescheck Jacken 2 Stabilität
Systembescheck Jacken 2 S$$

Bereiche gleicher Kennkreisfrequenz ω_0 ır bis - gleiche Dämpfung aber variables ω_0^{\pm} => Pole liegen in linker s-Halbebene auf einer Geraden => größeres ω_0 => schnelleres Einschwingen bei größeren Stellgrößen ABER: Auf Stellsignalbegrenzung achten Im(s) 0.8 ω_N 0.6 $0.6\omega_N$ 0.4 0 5.... 0.2 Im(z) 0 Re(s) -0.2 -0.4 Bereiche gleicher Abklingzeitkonstanten oder - Abklingzeitkonstante δ gibt an wie schnell ein stabiles System auf seinen Endwert einschwingt nen. PT_1 Sprungantwort: $g_1(t) = 1 - e^{-at} \Rightarrow \delta = -a$ ve $PT_2: g_2(t) = K \left[1 - \frac{1}{\sqrt{1 - D^2}} e^{\sigma_e t} \cdot \sin\left(\omega_e t + \varphi\right) \right]$ $\Longrightarrow \delta = \sigma_e = \text{Realteil der Polstellen}$ Einschwingzeit = $T_{ein} \approx 3T = \frac{3}{a} = \frac{3}{|\delta|}$ > je größer δ desto schnelleres Einschwingen Im(s) 0.8 Re(z) ω_N 0.6 0.4 0.2 Im(z) 0 ffekt) Re(s) δ -0.2 2.7 Wahl der Abtastzeit - zu klein => Rechneranforderungen hoch - zu hoch => Regelkreis kann instabil werden - Schwingungsfähiges System = Schwingfrequenz - Nicht-Schwing. System = Anstiegszeit verwenden Anzahl der Abtastschritte N_r = $N_r = \frac{T_r}{h}$ PT₁: T_r = T_{an} (Anstiegszeit) Re(z) $PT_2: T_r = \omega_0^{-1} e^{\varphi/\tan(\varphi)}$ Normal: $N_r = 4 ... 10$ 2.9 Beispiel: Regelung eines Doppelintegrators $\frac{1.9 \text{ Dets}_{1222}}{H_0 G(z)} = \frac{0.5(z+1)}{(z-1)^2} \quad \text{mit P-Regler:} \\ u_k = K(r_k - y_k) = Ke_k, \quad K > 0$ => Char. GI: $N_{RK} = (z - 1)^2 + 0.5K(z + 1)$ D<1 $= z^{2} + (0.5K - 2)z + 1 + 0.5K = 0$ Stabilität nach Jury: $N_{RK}(z=1) > 0 \rightarrow$ K > 0 $(-1)^n \cdot N_{RK}(z=-1) > 0 \quad \rightarrow \quad 4 > 0$ $|a_0| < a_n$ $\rightarrow |1 + 0.5K| < 1$ => I <=> III => P - Regler nicht geeignet $PD-Regler: <math>u_k = K(e_k - T_d \dot{y}_k)$ mit $\frac{d\dot{y}}{dt} = \overline{u}$ $=> \dot{y}_{k+1} - \dot{y}_k = u_k \implies \dot{y}(z) = \frac{1}{z-1}u(z)$ $=> y(z) = \frac{0.5K(z+1)}{(z-1)(z-1+T_dK) + 0.5K(z+1)}r(z)$ Achse => Polplatzierung über Wahl von K und T_d Aus Jury: K > 0, $T_d > 0.5$ und $T_d K < 2$ Festlegung: $T_d = 1.5$ K=0.7 K=0.5 ein-) 0.5 ms m(z) -0.5 K=1.25 $\begin{array}{l} \text{Möglichkeiten:} \quad -1 \quad -0.5 \quad 0 \quad 0.4 \\ \text{K} = 0,5 \quad => \text{ konjg. kompl. Pole} \\ \text{K} = 0,5 \quad => \text{ konjg. kompl. Pole} \end{array}$ 0.5 $K = 0,75 \implies$ kompl. Pole, stärker gedämpft

K = 1 => Pole im Ursprung = Deadbeat Regelung K = -1,25 => Wenig Dämpfung, starkes Schwingen

